8 research outputs found

    Multi-Agent Pathfinding in Mixed Discrete-Continuous Time and Space

    Get PDF
    In the multi-agent pathfinding (MAPF) problem, agents must move from their current locations to their individual destinations while avoiding collisions. Ideally, agents move to their destinations as quickly and efficiently as possible. MAPF has many real-world applications such as navigation, warehouse automation, package delivery and games. Coordination of agents is necessary in order to avoid conflicts, however, it can be very computationally expensive to find mutually conflict-free paths for multiple agents – especially as the number of agents is increased. Existing state-ofthe- art algorithms have been focused on simplified problems on grids where agents have no shape or volume, and each action executed by the agents have the same duration, resulting in simplified collision detection and synchronous, timed execution. In the real world agents have a shape, and usually execute actions with variable duration. This thesis re-formulates the MAPF problem definition for continuous actions, designates specific techniques for continuous-time collision detection, re-formulates two popular algorithms for continuous actions and formulates a new algorithm called Conflict-Based Increasing Cost Search (CBICS) for continuous actions

    Generalized and Sub-Optimal Bipartite Constraints for Conflict-Based Search

    No full text
    The main idea of conflict-based search (CBS), a popular, state-of-the-art algorithm for multi-agent pathfinding is to resolve conflicts between agents by systematically adding constraints to agents. Recently, CBS has been adapted for new domains and variants, including non-unit costs and continuous time settings. These adaptations require new types of constraints. This paper introduces a new automatic constraint generation technique called bipartite reduction (BR). BR converts the constraint generation step of CBS to a surrogate bipartite graph problem. The properties of BR guarantee completeness and optimality for CBS. Also, BR's properties may be relaxed to obtain suboptimal solutions. Empirical results show that BR yields significant speedups in 2k connected grids over the previous state-of-the-art for both optimal and suboptimal search

    Conflict-Based Increasing Cost Search

    No full text
    Two popular optimal search-based solvers for the multi-agent pathfinding (MAPF) problem, Conflict-Based Search (CBS) and Increasing Cost Tree Search (ICTS), have been extended separately for continuous time domains and symmetry breaking. However, an approach to symmetry breaking in continuous time domains remained elusive. In this work, we introduce a new algorithm, Conflict-Based Increasing Cost Search (CBICS), which is capable of symmetry breaking in continuous time domains by combining the strengths of CBS and ICTS. Our experiments show that CBICS often finds solutions faster than CBS and ICTS in both unit time and continuous time domains

    Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks

    No full text
    The multi-agent pathfinding problem (MAPF) is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses, autonomous vehicles, and robotics. Research on MAPF has been flourishing in the past couple of years. Different MAPF research papers assume different sets of assumptions, e.g., whether agents can traverse the same road at the same time, and have different objective functions, e.g., minimize makespan or sum of agents' actions costs. These assumptions and objectives are sometimes implicitly assumed or described informally. This makes it difficult for establishing appropriate baselines for comparison in research papers, as well as making it difficult for practitioners to find the papers relevant to their concrete application. This paper aims to fill this gap and facilitate future research and practitioners by providing a unifying terminology for describing the common MAPF assumptions and objectives. In addition, we also provide pointers to two MAPF benchmarks. In particular, we introduce a new grid-based benchmark for MAPF, and demonstrate experimentally that it poses a challenge to contemporary MAPF algorithms

    The SEEDS High-Contrast Imaging Survey of Exoplanets Around Young Stellar Objects

    No full text
    corecore